A MORPHOLOGICAL STUDY OF CELIAC, SUPERIOR MESENTERIC AND INFERIOR MESENTERIC ARTERIES IN ATHEROSCLEROSIS
Abstract
Background: Depolymerisation of acid-mucopolysaccharides results in the loss of metachormasia ofthe ground substance followed by visible fibre crumbling, complete dissolution and replacement bylipid droplets and cholesterol. The objective of this study was to assess the distribution of differentatherosclerotic lesions in celiac, superior mesenteric and inferior mesenteric arteries relation to age andsex. Methods: A prospective descriptive observation study was conducted at Mortuary of King EdwardMedical University Lahore, and Department of Pathology Allama Iqbal Medical College Lahore. Atotal of 30 human autopsies were carried out. Celiac, Superior mesenteric and inferior mesentericarteries were taken out and opened length-wise. One to four areas of tissue were taken from each arteryfor histological examination. Slides were prepared from each paraffin block. Sections were stained withhaematoxylin and eosin. Special stains were performed on sections to display each component ofatherosclerosis. Results: The fibrolipid plaques were seen in 6 cases. The complicated lesions werepresent in 5 cases. Of these, 4 showed ulceration and 1 showed thrombus formation. The calcifiedlesions were observed in 5 cases. The morphological changes in media and elastica were present in 4cases. In superior mesenteric artery fatty streaks were present in 8 cases. The fibrolipid plaques wereconfirmed in 5 cases. Three cases showed ulceration, 1 case showed intimal vascularisation,haemorrhage, and thrombus formation. The calcified lesions were present in 2 cases. Themorphological changes in media and elastica were seen in 4 cases in anterior mesenteric artery. Fattystreaks were present in 8 cases. The fibrolipid plaques were grossly observed in 6 cases. Thecomplicated lesions were present in 4 cases; of these, 3 cases showed ulceration, and 1 showed intimalvascularisation and haemorrhage along with thrombus formation. The calcified lesions were present in3 cases. The morphological changes in media and elastica were present in 4 cases. Conclusion: Thisdata indicates the incidence of ischemic changes in abdominal viscera due to atherosclerotic narrowing.Keywords: Celiac, Superior, Inferior, mesenteric, atherosclerosis, arteriesReferences
Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ.
Weight in infancy and death from ischaemic heart disease.
Lancet 1989;2:577–80.
Oliveria SA, Ellison RC, Moore LL, Gillman MW, Garrahie
EJ, Singer MR. Parent-child relationships in nutrient intake: the
Framingham children’s Study. Am J Clin Nutr 1992;56:593–8.
Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis
GJ. Compensatory enlargement of human atherosclerotic
coronary arteries. N Engl J Med 1987;316:1371–5.
Kronmal RA, Mc Clelland RL, Detrano R, Shea S, Lima
JA, Cushman M, et al. Risk factors for the progression of
coronary artery calcification in asymptomatic subjects: results
from the Multi-Ethnic Study of Atherosclerosis (MESA).
Circulation 2007;115:2722–30.
Chironi G, Simon A, Denarie N, Védie B, Séné V, Mégnien JL,
et al. Determinants of progression of coronary artery calcification
in asymptomatic men at high cardiovascular risk. Angiology
;53:677–83.
Margolis KL, Dunn K, Simpson LM, Ford CE, Williamson JD,
Gordon DJ, et al. Coronary heart disease in moderately
hypercholesterolemic, hypertensive blackand non- black patients
randomized to pravastatin versus usual care: theantihypertensive
and lipid lowering to prevent heart attack trial (ALLHAT-LLT).
Am Heart J 2009;158:948–55.
Ross. R. Atherosclerosis: the role of endothelial injury, smooth
muscle proliferation and platelet factors. Triangle 1976;15:45–51.
Dalferes ER Jr, Radhakrishnamurthy B, Ruiz HA, Berenson GS.
Composition of proteoglycans from human atherosclerotic
lesions. Exp Mol Pathol 1987;47:363–76.
Gordon RC, Julie HC. Recent advance in Molecular Pathology:
Smooth muscle phenotypic changes in arterial wall homeostasis:
Implications for the pathogensis of Atherosclerosis. Exp Mol
Pathol 1985;42:139–62.
Rahilly-Tierney CR, Lawler EV, Scranton RE, Gaziano JM.
Lawler, Cardiovascular benefit of magnitude of Low-Density
Lipoprotein Cholesterol Reduction A Comparison of subgroups
by Age. Circulation 2009;120:1491–7.
James, EC, Mashtaq, AK, Gregory C, Henderson G, Kruth HS.
Cytometric study of Cholesteryl ester containing “foam” cells. II,
analysis of aorta from cholesterol fed swine. Experimental and
Molecular Pathology 1987;46:52–63.
Smith, EB, Staples EM, Dietz HS, Smith RH. Role of
endothelium in Sequestraton of lipoprotein and fibrinogen in
aortic lesions, thrombi and Graft Pseudo-intimsas. Lancet
;2(8147):812–6.
Hoff HF, Heideman CL, Gaubatz JW, Scott DW, Titus JL, Gotto
AM Jr. Correlation of Apolipoprotein B retention with the
structure of atherosclerotic plaques from human aorta: Lab Invest
:38:560–7.
Lewis, JG, Richard G. Taylor BS, St Clair RW, Cornhill JF.
Endotheilal surface characteristics in Pigeon coronary artery
atherosclerosis. Lab Invest 1982; 46(2):123–38.
Elesber AA, Redfield MM, Rihal CS, Prasad A, Lavi S, Lennon
R. Coronary endothelial dysfunction hyperlipidemia are
independently associated with diastolic dysfunction in humans,
Am Heart J 2007;153:1081−7.
Kanazawa T, Izawa M, Kaneko H, Onodera K, Metoki H, Oike
Y, et al. Comparison among Lipid constituents in Native LDL,
ultra water soluble LDL, and Vessel wall and their significance in
atherosclerosis. Experimental and Molecular Pathology
;47:166−74.
Rivera JJ, Nasir K, Katz R, Takasu J, Allison M, Wong ND, et
al. Relationship of Thoracic Aortic Calcium to Coronary
Calcium and its Progression (from the Multi-Ethnic Study of
Atherosclerosis [MESA]). Am J Cardiol 2009;103:1562–7.
Published
Issue
Section
License
Journal of Ayub Medical College, Abbottabad is an OPEN ACCESS JOURNAL which means that all content is FREELY available without charge to all users whether registered with the journal or not. The work published by J Ayub Med Coll Abbottabad is licensed and distributed under the creative commons License CC BY ND Attribution-NoDerivs. Material printed in this journal is OPEN to access, and are FREE for use in academic and research work with proper citation. J Ayub Med Coll Abbottabad accepts only original material for publication with the understanding that except for abstracts, no part of the data has been published or will be submitted for publication elsewhere before appearing in J Ayub Med Coll Abbottabad. The Editorial Board of J Ayub Med Coll Abbottabad makes every effort to ensure the accuracy and authenticity of material printed in J Ayub Med Coll Abbottabad. However, conclusions and statements expressed are views of the authors and do not reflect the opinion/policy of J Ayub Med Coll Abbottabad or the Editorial Board.
USERS are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
AUTHORS retain the rights of free downloading/unlimited e-print of full text and sharing/disseminating the article without any restriction, by any means including twitter, scholarly collaboration networks such as ResearchGate, Academia.eu, and social media sites such as Twitter, LinkedIn, Google Scholar and any other professional or academic networking site.